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ABSTRACT

Let { - ((x,y) e R I x 2 + y2 4 1), Sn _ {v e R0 + 1 Ivi - 1} (n>2),

and let y e C2'6 (anSsn). We study the following problem

u eS C 2(nfiBn) C 0(?1; Sn
M') -Au uIVul 2

u - y on an

Problem () is the "Dirichlet" problem for a harmonic function u which takes

its values in Sn . We prove that, if y is not constant, then () has at

least two distinct solutions.
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SIGNIFICANCE AND EXPLANATION

Let Q, M be two Riemannian manifolds (S with boundary). A map

u + ' M is called harmonic if it is an extremal of the Dirichlet integral

{ )Jn 1I7ul 2  dui ( ) .

If M = R, (*) is the "classical" Dirichlet integral. If A - [0,11,

f! the harmonic maps are the geodesics joining u(0) to u(1). These two

situations have been studied extensively in the past. Only recently have more

general situations been treated. InTis paper we-otudy harmonic maps when

-44' is the two dimensional disk and M = , In this situation, given a smooth

function from a to we prove that if r is not constant, there

exist two harmonic functions u such that ulI 7.
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THE DIRICHLET PROBLEM FOR HARMONIC MAPS
FROM THE DISK INTO THE EUCLIDEAN n-SPHERE

V. Benci* and J. M. Coron**

Introduction

Let

-((x,y) e R 2 I x2 +y 2 < 1)

and

s- {v e  + 1 1vj - 1} n 0 2

Let y be a map from 3A into Sn. We seek functions u in

C 2(nS n ) n C 0(fiSn ) such that:

1.1) - u - uIVul2

(1.2) u Y on l .

We shall assume that 
V

2,6
(1.3) y e C (39) with 0 < 6 < I

which means that Y e C 2(09) and that the second derivative of y in H8lder

continuous with exponent 6.

The existence of at least one solution is obvious. To see this let

E - (u e H1(n1''+1) I ul - Y, lul = 1 a.e.)

where HI(nuI-+1) is the usual Sobolev space. Using (1.3) it is easy to see

that E is non void. On E we consider the functional

E(u) - InIVu12

Clearly there exists some u in E such that

(1.4) Elu) - Inf E - m

u is a solution of (1) and (2) and thanks to a result of Morrey tM2]

Universits di Bari - Bari, Italy.
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Our main result is:

Theorem 1

If y is not constant then there exist at least two functions in

C (dS ) n C 2'(iSn) which are solutions of (1.1) - (1.2).

Remarks

1) If u e C0 (?iS n ) . H (MRln + l ) satisfied (1.1), u in harmonic; moreover

it is well known (see [LU2], [(W], [Wi]) that u e C"(ISn ) and if

ulan e Cki(fOlsn), u e C'k ;s,8 n). In particular, in our case, if

u e C 0iISn) n HI(M, AP 1 ) is a solution of (1.1) - (1.2) then

u e C2'8 (,Sn).

2) In the case n - 2 theorem I has been proved before by H. Brezis - J. M.

Coron [BC2] and J. J8st [J] independently.

In this case, it is possible to assume less regularity on y; for

example E .0 # is sufficient to guarantee at least two solutions in

Hl(lSn), we do not know if this is the cae for n ) 3. The difference

between n = 2 and n ) 3 is that E is not connected when n - 2 and

connected when n ) 3. (To see that E is connected when n ; 3, use the

density result due to R. Schoen - K. Uhlenbeck [SU2J.)

3) When y is constant it has been proved by L. Lemaire [LM] that, if

0-n
u e C M;(Sn) n H1(;FRn+l) is a solution of (1.1) - (1.2), then u is

identically equal to the same constant.

In order to prove theorem I we introduce
(5 - ( I e 0(Sn'2;WlIP(nSn)), ie not homotopic to a constant)

p Y

where p > 2,

TwP(lSn) u I u IP(,Sn), onj_ -2-



and Co (S n-1W 'p(nSn)) is the set of continuous functions from Sn- 2 into

w l'P(nsn). Lett ' p
(1.6) E = U gp

p>
2 p

and

(1.7) c - Inf Max E(O(s))
cez sesn-2

The main result of the paper is the following theorem:

Theorem 1.2. Suppose that Y e C2'6 (qn,f)(n)2) is not constant. Then the

problem (1.1), (1.2) has at least one solution u e C2,6(jiSn) such that

E(u) - ci moreover if c - m, the problem (1.1), (1.2) has infinitely many

solutions when n ' 3; two solutions when n - 2.

Clearly theorem 1.1 follows from theorem 1.2.

The main difficulty in proving theorem 1.2 comes from a lack of

compactness. For this reason we are not able to prove directly that c,

defined by (1.7) is a critical value of E (i.e. that there exists u

solution of (1.1), (1.2) such that E(u) - c). For this reason, following an

idea of J. Sacks and K. Uhlenbeck [SU1] we study an approximate problem, i.e.

the critical points of the functional

(1.8) Ea(u) - f.((1 + IVu12)a - 1]dx, u e w1'2 *, a > 1

This functional satisfies the Palais-Smale condition. Let

(1.9) cc M inf Max Ea(0(s))
aet2a sesn- 2

We prove that ca  is a critical value of Ea  larger than c and that

limc C a M

0>1

Just to explain the difficulty let us assume for the moment being that c > m.

There exists u. such that

E (u0) - 0

-3-
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and

Obviously ua  is bounded in H and therefore we can extract a subsequence

u a  which converges weakly in HI to some u; u satisfies (1.1) - (1.2) (see
n

[SUll) and the key point is to prove that u . u. In fact we shall prove that

u C1 tends strongly to u and then E(u) = c > E(u). The proof of the strong
n

convergence relies on some ideas used in [BC21. We prove the crucial strict

inequality

c < m+ 8w

then, using a theorem of E. Calabi [C] and arguments involved in J. Sacks - K.

Uhlenbeck (SUI] we prove the strong convergence.

Remark

Similar difficulties and methods also occur in [A], [BC1), [BN], [J],

[LB], [LN], [ST], IT] and [W21.

For simplicity we write H1  instead of Hl

F -4-
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2. A topological result

In this section we shall prove a topological result which will be used in

the proof of theorem 1.2.

Let {x e I2 Ixj < 1) and let M be a C2-manifold sitting in

Supposa that f e C (Mi) is homotopic to a constant. We set

H I(Q;M) - {u e H (R;f ) I ul,, - Y and u(x) e m for a.e. x e n}
YII
C (,m) - (u ec Offm) I u{ -I .

For w e H (;M) we set

A6 (w) ={u e H(f M) I lu-wi < 6 and u - w on

Theorem 2.1. For every w e n (Q;M) there exist 6, c o > 0 and a continuous

map

T [0, 0 ] x A (w) + HI (0,M)
0 Y

such that

(i) T0 u - u for every u e A6 (w)

(ii) T 0u 8 C1 (n;M) for every u e A6 (w)

(iii) TC: A(w) + Y(QjM) is continuous

(iv) T 10,E0 x [W1'P(O,M)(j A(w)] + W1'P(MIM) is continuous for every( YY

p )2.

First we shall prove theorem 2.1 in the case in which y is identically

equal to a constant c.

Lemma 2.2. If y- c (c is a constant) then the conclusion of theorem 2.1

holds.1!j



Proof. We extend every map u e H1 (01M) to 12 taking u(x) a c for

x e R2 -0. We shall denote u and its extension by the same letter.

Let e c" CR2, (0,+-)) with 2 7 and

(2.1) *Cx) - 0 if x # a

We set

and

(2.2) uC(x) (JEu)(x) . f *(x-y)u(y)dy

We have the following inequality which is due to R. Schoen and K.

Uhlenbeck [SU2] there exists C3 > 0 sudh that V 6 > 0 3c0 > 0 such that

dist(u (x),M) 4 c36 for every u e A6(w)
(2.3)2
(.)for every x e R 2 , for every c e [0,C I

0

For the convenience of the reader we recall the proof. In fact, since

u(y) e M for a.e. y e 2 we have

dist~u (x),M) < [u x) - u(y)I

By the above formula, for x 0 R2 we get

we 2 dist(u C(x),M) flx..yl<c lu C(x) - u(y)Idy <

Scc 2 [flx .yl<,,Vu(y)IdyIl/2 (by the Poincarg inequality)

(2.4) < c 2Cfix Vw(y)12dy , f x <dy 1/ 1

Cc~c(J 1  ,<,tVu(y) - _yjd xYI<C ,yw(y)12dy 2

I; C c:2 (Iu-w 2 H1 ( +) f jx-y<(IVw(y)Id)

-6-j _



w

Since IVwI2 e L1(R2), we can choose E so small that

flx_yl<IVw(y)12 dy < 62 for every x e R2

So by (2.4) and the above inequalities we get

(2.5) dist(u e(x),M) < c3& for every u e A6 (w), for x e R2

and e sufficiently small where c3  is a suitable constant which depends

tonly on the Poincarg constant cl.

Now let d be a constant such that the projection map

P : Nd(M) + M

is well defined. Here Nd (m) -{x e Rk I dist(x,M) < 61.

Now fix 6 < A and eO  small enough in order that (2.3) holds for
2c30

every e e (o,£ 0 ]  (and every x e Rk , every u e A6 (w). Thus the map

P o JC A6 (w) + CI (R 2 m) e e (Oc]

is well defined and continuous.

Now consider the map

1 2 1-
Re : C (RM) + C (E,M)

defined by

(R u) (x) = U(7-. .

Clearly R£ is continuous in u and c. Moreover, if u e P o J (AS(w))

(E 4 e0) it is easy to see that (R u)I c. Therefore the map

T: [0,0 x A *(w) + H (O;M)
0 6

To - Id

T = R . o P o J

~satisfies the requirements (i), (ii) and (iii).

Moreover one can easily check that T is continuous and moreover satisfy

,, (iv).

~-7-



Now we shall consider the case in which y is not constant. Since we

have assumed that y is homotopic to a constant, there exists a

homotopy h e c (I x a;M) such that

(a) h 0(x) = y(x) v x e 3Q
(2.6)

(b) hi(x) = c Y x e aQ (c is a constant)

Since we have assumed y to be of class C', we can suppose that also h is

of class C1.

Lemma 2.3. Under our assumptions there exist two continuous functions

H : I x H1(Q;M) + HI (Q;M) with HA(u)Ia = h (Y)
Y

and

K : f(X,u) e I x H (Q;M) I = hX(Y) + H (M M)

such that

HO = K0 = identity in H 1 (;M)

Moreover H and K are continuous also in the W"P(S;M) topology.

Proof. For u e H1 (S;M) set
Y

Z(x) u(x) for Ixi 4 1

h x xlT-) for 1 Ixi < 2

By virtue of (2.6)(a) e H1(Q ; M) where S1 = {x e R2 1 IxI < 2} and of

c I 
I
YIcourse it depends continuously on u e H Y(QhM).

For v 8 He1 ()(9;M) we set

v(x) for IxI < 1

h h(2_lx ) (T) for 1 (Ixl < 2

Clearly v e H (;M).

Finally for x e n set

(H u)(x) u((1+X)x) u e H (;M)

.1. *1



(K v)(x) - C((l+X)x) v e H 1  )(MM)

hX(Y

It is easy to check that HA and K, satisfy the required conditions.

Proof of theorem 2.1. Let H be the map defined in lemma 2.3. Then

H (w) e HI (0M).

By lemma 2.2, there exists W, C0 > 0 and a continuous map

T: (0,z0 x A (H1 (w)) + H 1(ilM)

which satisfies (i), (ii), (iii) and (iv) of theorem 2.1.

Since H1  H (n;M) + (IlM) is continuous, there exists 6 > 0 such
c

that

H (A6 (w)) c A (H1(w))

Therefore it makes sense to define a map T : 0,1+C0 Ix A (w) + H 1 ($I'M) as

follows

KA o HA(u) for X e [0,1]

1 0 T A-1 o H 1(u) for [ e 1,1+Z 0]

Such a map satisfies (i), (ii), (iii) and (iv) of Theorem 2.1 with

~E 0 - 1+I:O . O I-

Lemma 2.3. Let z e C I( ;M) and set

1-
) ''(Z) -{u e C (NM) I Iz-u1 < n)

C

Then if n is sufficiently small, N n(z) is a strong deformation retract of

{z) for every z e C (;M).
- -. Y

Proof. Choose i small enough in order that B (y) n M is geodesically

convex in M for every y e Mi (Br (y) = {x e Rk I Is-yJ < r)). Then for

x Ba (y) we define

-9-



ht(yx) - 0(t) where 1(t) is the (unique) goodesic a N

parametrized with the arc ls&Vtk such that

(O) - y and () - x

So if H is a smooth manifold h is smseftk.

For u e %(z) we set

StWW - ht(s3x),ulX))

Clearly S : I x N (z) C (i:x) is ci , I 1 Id s SOO z for

every u e N() and St(z) - z for every t 6 [0,1].
0

By theorem 2.1 and lemms 2.3 the fellevia Corollary follows which will

be used in the proof of our main theorem.

Corollary 2.3. For every w • X I OW) there is 0 > 0 such that

As(W) n W1 'P(QN) is contractible to a poin in W' (Zp N), p N 2.

1
Proof. By theorem 2.1 there exists a contin s map T : A (w) + C (fM).

0

So given n as in lemma 2.3, there exists 1 • (0,41 such that

T e (Ae(w)) CU N CT ( 0W)

By lemma 2.3, N n(T (w) is contraotible, then also A(W) nWPl;M)

is contractible to a point in WP(AIK).

ILI

]a

i~i -10-o
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3. A Convergence Theorem

In order to approximate the solutions of problem (1.1), (1.2) with the

critical points of the functional (1.8) we need the following theorem which

has been inspired by J. Sacks and K. Uhlenbeck [SU1].

Theorem 3.1. For every a > 1 let ua e Ea be a solution of

(3.1) E (u ) 0a

and suppose that

(3.2) lim E(u a) < m + 8 •
a+1

Then u has a subsequence u + u in CI(d;S n  and u is a solution of
Te uk

(1.1).

In order to prove theorem 3.1 we need the following proposition due to J.

Sacks and K. Uhlenbeck [SU1].

Proposition 3.1

There exist a0 > 1 such that if u e E with I < a 4 a0 and

E'(u) = 0 then u e C2 '6 (().
a

Proof. See the proof of proposition 2.3 in [SU1]. In fact in [SUI] only the

regularity inside 9 is proved. But the theorem 1.11. 1' of Morrey [M2]

which is used in [SU1] is still valid in all 0 if z is assumed to be in

H0  (see p. 38 in [M21). Therefore we may apply this theorem to z u -

2, 1
where * e C 65( ) with Y = on an. We conclude that Vu e H The end

of the proof is an easy adaptation of the proof in [SUI].

Proof of theorem 3.1.

In the following we will always assume that I < a ( a0. Since u. is

bounded in L and Eu ) is bounded, u is bounded in H1. Thereforea a

there exist a sequence (*kke such that uMk tends weakly in HI to

some u. For simplicity we shall write uk instead of u . Using (3.1)

ak
-11-



(and proposition (3.1)) we have

(3.3) -Auk - 2 -k (u k

(T 

klU 
k 

2

where

2 Uk "k k e Uk

1(:p:n+ 1

Iin+l

n+ 1q

ad Uk u." q~l Nq'

Let

0k = Max )Vu.(x)l

xen

irst let us assume that ek  is bounded.

We are going to prove that 
in this case uk tends to u in C ( ) and

that:

-A.u 1ul 
2

Using (3.3) we have:
a2 q

.1 S 
p 4 n 1

(3.4) 
%i<#2

l<cf;n+ 1

with j p

(3.5) 
ijk c( )

Since 8k is bounded we have%

(3.6) Iuk1Vu S - (0 C

it follows from (3.4), 
(3.5), (3.6) and a theorem of 

Morrey [MI] (see

also [NJ) that:"

-12-
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(3.7) ay > 0 such that lUkl C1 Y ( a ) I C 

(Actually in CHI] and (N] the theorems are stated for one equation and not for

a system. But, the proofs can be easily adapted to the system (3.4).) It

follows from (3.7) that uk tends to u in C 1(). Moreover (3.3) may be

written in the following divergence form:

a 2) 1 3 k 2 2) - 1
- ((1+lVuIl - ukiVukl(l+lVuk ) , i - 1,2 .

ii

Using the convergence of uk to u in C 1() we have

(3.8) -du - utvul2

Now we want to show that

(3.9) lim k - +,,

is not possible. We argue indirectly and suppose that (3.9) holds. Let

ak e 0 such that

ek - IVuk(ak) •
After extracting a subsequence we may assume that either

(3.10) lim ek d(ak 3 Q) - 4-

k+ 440k k

or

(3.11) lie ak d(akO 0 ) - p < 4-

where d(ak 3 9) is the distance from ak to 80.

First let us assume that (3.10) holds. Then, like in [SU1] we define

v k(x) - uk( + ak)

vk is defined on A0 where

0k 'Iye)

* Using (3.10) it is easy to see

(3.12) V R > 0 ak(R) such that k ) k(R) -> B(O,R) c 9k

I -13-
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where B(0,R) - {x R 2 I x R) . Moreover it follows from (3.3) that, in

(3.13) - Avk - 2 lek2 2 (VVkVVkV2Vk) -k lVvk2.

(k +Vkl

We have

(3.14) V k lC0( ) 15

As before it follows from (3.12), (3.13), (3.14) and [MI] (or [N]) that there

exists y > 0 such that V R > 0 C(R) such that

'V'Ii 4 C(R)Vk

C (B(0,R))

Therefore (after extracting a subsequence) we have

(3.16) vk + v in C (B(0,R)) V R

and in particular

(3.17) IVv(0)l - urm IVVk(0)I - 1
k+4m

We write (3.13) in a divergence form:

(3.18) - a ((1+ 2 - kk kk 37i 2 - 1,2

From (3.16) and (3.18) we get

(3.19) - Av -vVvI

Moreover

fI vki 2 - flVuk12 4 c

thus

(3.20) f 2 1Vvl2 < 4 •

From (3.19), (3.20) and [SUl] (theorem 3.6) it follows that v can be

extended to a regular harmonic map from R2 U 82 into 8n .

The following theorem is due to E. Calabi [C] (theorem 5.5):

-14-A ___



Theorem

Let v be a harmonic map from S2 into SM whose image does not lie in

any equatorial hyperplane of Sm  then

i) the area A(v) of v(S2) is an integer multiple of 2w

ii) m is even, and A(v) ), w •

Remark

In [C] v is assumed to be an immersion but the proof given in [C] works

also if v is not an immersion (note that the points where v is not an

immersion are isolated and branch points, see e.g. [GORfl.

Any harmonic map w from S2 into S2 which is not constant satisfy

(see, for example [L] theorem (8.4))

E(w) ) 81

Therefore if w is a harmonic map from S2  into Sn which is not constant,

using the Calabi theorem and an easy induction argument we have

B (w) ) 8 .

(we recall that E(w) ) 2 A(w).
r2

Our map v is a harmonic map from S2  into Sn and (see (3.17)) v is

not constant. Therefore

(3.21) E(v) • 8w

4 We are going to prove (as in (Stl] ) that

(3.22) lim E(uk) ) 3(u) + E(v)
k 44

Since by definition of m (see (1.4))

(3.23) 3(u) ; M

using (3.21), (3.22), (3.23) and (3.2) we get a contradiction.

;77.-



We may assume that ak tends to some a in ). Let e > 0 and

r > 0 such that

(3.24) iD(a,r) tVuI2 c £(3.24)

where

D(a,r) - (x e fn I Ix-al 4 r}

We have

(3.25) JD(a,r)IVUkI 2 J Ck IVvki 2

where

Ck - (e k (y- ) I y e D(a,r)}

Using (3.10) we have

V R > 0 2k(R) such that k ) k(R) > B(O,R) c Ck

Therefore

(3.26) Lrm ]IVVk 2I > E(v)

k+4Ho k

From (3.24), (3.25) and (3.26) we have

lim E(uk) ) E(u) + E(v) - e (V e > 0)
k+4w

which proves (3.22).

Now it remains to exclude (3.11). We assume (3.11) holds. Now (3.12) is

false.

We may assume that ak tends to some a. Using (3.5) and (3.9) we see

that a e on with no lack of generality we may assume that

lim ak = (-1,0) = a
k+4a

2 _2
Let T R - ((1,0)) R

1 2 2
(3.27) T(X11X2) - x- 12  2 ' )2 2) fi (x 1 'x 2 )"

T(sacnfrml1 + x2  (x1-1) + x2

T in a conformal diffeomorphism between ((1,0)) and Ix R and

-16-
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TO- 01,0)) f .) x R

22

(3.28) T "1  )) =- -2  -2 -2 -
x I + x2  x I + x 2

et U mx R and let

u k -U k o T

Clearly
- 1 V-

uke C (U)

and a straightforward computation yields

-4
Auk(x) = Ix1 t~k(X)

Vuk 2(x) =1-141v 12 )

where x - Tx.

In particular:

(3.29) IVUkI 4 k

and
etk

(3.30) I uk(ak)1 - 46 as k i

k,2

where ak = Tak

Using (3.3) we get (1 p n):

-p pq k
(3.31) -Au~k + (c11J

1) 14 iC2 ijk ?x -i;-Ax

l4q< n+l

l<q'Cn+l

where

-17-



B qe co() c q 0 -
ijk A~e U

and

(3.32) IBM 1 I C, ICi c C .
ijk co(U) C(U)

We have

-= on Mf with

= I (4t2-1 4t)

T2+1 t2+1

If ak = (xklyk) and ak (xkyk), using (3.28) we get:

1 1-xk 1
2 2 2

(xk-l) + Yk

1-(x2+y2 )- - k k 2

2[(xk_1) 2 + y2]

Then, by (3.11), we have:
1 p o(1)(3.33) " + -2- + --- (k + +m)

k k2 48 k 0)

Let

We have ;=k k on 39 with

k( t) = y(1 - + y

and thus

-- I 2,6
(3.34) k + y (.,0) in ( U)

Using (3.29) we have

(3.35) 'V (-

Using (3.31) and (3.32) we have (for 1 4 p 4 n):

-18-
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32q

+~1 ~ ijka~
1 1C 2 k( i x

14q<n+l

(3.36)

ki 1 VUk (k  ik 3 xi
1<q<n+l

with

(3.37) 1B ip Zpql C •
ukC ) ikCC (U)

Let R > 0 and UR - U n {x e R I xj < R). Using (3.34), (3.35), (3.36),

(3.37) and the Morrey-Nirenberg estimate [M13, [NJ we get:

(3.38) am > 0 3C(R) such that Gkc I 1 ('a C(R), V k

Remark

Actually in [I] there is not estimate up to the boundary but this

estimate can be deduced from the interior estimate, see (GT] (p. 248-249).

One can find estimate up to the boundary in [LUl] (p. 455-456) and (N]. In

all these references the theorems are stated for only one equation but the

proofs can be easily adapted to our system (3.36).

Therefore we may assume that for some u in CI'm(u):

(3.39) lim Iuk - u1 - 0

k ++", (6R)

Moreover, using (3.36), (3.37), (3.15) it is easy to see that if w is a

bounded regular open set of U such that w c U then

Zk 2,2
W2'(w)

-19-



.- 71

Therefore, using (3.36) we have:

(3.40) - i uV 2  in u

With (3.34) we get

(3.41) u = V(1,0) on 3U

Moreover
/ ~k2  ,,uk2 - uvk 2 ,
f nI V U k -f UI V U k 4 r k

therefore:

(3.42) f IVulZ2 <
U

- 0-We recall that u e C (U) (and even e c'(U)). Then using (3.40), (3.41),

(3.42) and a very slight modification of a theorem of L. Lemaire (see the

appendix) we have
u--1(3.43) -= ( ,0 .

But, using (3.30):

(3.44) lira IVzkl0k(X- - 1) + 1,0)l 2

and using (3.33):

(3.45) lim 0k(x + + R
k++Ct 2 2

and then using (3.39), (3.43), (3.44), (3.45) we get a contradiction.

0

I
p

-20-
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4. Proof of Theorem 1.2

The proof of theorem 1.2 lies on several lemmas.

Lemma 4.1. Let m and c be the constants defined by (1.4) and (1.7)

respectively. Then

c < m + 1f

Proof. We shall construct a map a C e3 such that

(4.1) Z(aC (8)) < m + S •

Then the conclusion follows by the definition of c. The construction of such

a map is an adaptation of the proof of lemma 2 in ([C2].

Let u e E such that E(u) - m. Thanks to Morrey's regularity result
11+1 D2, £-- _1

U e c (aR ) n C (,,R ). Since y is not constant u is not constant

and therefore Vu(x0 ,Y0 ) 0 0 for some (xOy O ) in Wu rotating coordinates

in R2 we may always assume that

lx(X 0 ,Yo) Y(x0,y0 ) - 0

Let (ei)1<i<n+1 be an orthonormal basis in e + l such that:

x(X0Y0)- ae1

.y(xoyo) be2

U(Xoy 0 ) = e3

with a ) 0, b O 0, a+b > 0.

We shall identify Sn- 2  to Sn n {v e Sn I v.eI 
= 0, v.e2  0}. Let

r and 9 be such that x - x0 - r coo 0, y - y0 - r sin 0. Let e > 0 be

small enough. Let 1 2 £2Max(a,b) > 0.

We define a map W' 3 (fls)) in the following way (where

s e Sn-2):

if 2C < r, aC(s)(x,Y) u(xty)

2X 2X r2-X2

if X < r < C, a (s)(xY) ;-2  (x-x0 )e2 
+ -yy+r2 23

-21-
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2A 2X r 2 -X 2

if r < A, O(s)(x,y) = 2 (X-x )e + 2X (YY)e + r- s
2 2 0 1 X 2 +r(2 0 ) 2 X 2+r 2

n+ 1 n+1
if c < r < 2C, 0 (s)(x,y) = ) (Air+Bi)ei + [I - (Air+Bi) 2 ]/2e 3i= 1 i= )

1#'3

where Ai and Bi  depend only on e and C and are such that a (s) is

continuous at r - C and r - 2C for each a. More precisely

2c A, + Bi = u(x, + 2c cos 6, y0 + 2c sin E), 1 ( i ( n+1

A1 1 2 +C2
A +

CA + B = 2XE cs
2 2 2+

£ A2 + B2 = 0 , 3 < i < n+1

Since u e wlD 3 (aSn), ( e C0(Sn-2 ,'W1 3 (aSn)). Moreover
Y

n-2E(o C(s)) = E( (e 3)) for every s e s

and a straightforward computation leads to

E(o (e 3)) E(u) + 8w - yC2 + o(£2), ( 0)

where v > 0 (see [BC2]).

Therefore we can fix c small enough in order that

E Wo(s)) < E(u) + 8w

where o -o .

3
It remains to prove that 0 e Z (I < a ( -) i.e. that a is an

essential map. We argue indirectly. Suppose that a is not essential. Then

there exists a continuous map o

x n-2 , WI'2(asn) (I , 10,1])r, Y

such that

0(0,*) =o(-)

O(l's) -u

for every s e Sn - 2 where u e W 12a(n,sn
Y

-22-
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Now we define n~ i x a x s 2 + Sn as follows:

rn(trxfyrs) - o(t,s)(x,y)

Clearly n is continuous in all its variables and we have:

(a) r(O,x,y,s) = a(s)(x,y)

(42 c) Tnt,x,y,s) = y(x,y) v(x,y) e an, Y t e i, v a e sn"

Next step will be to extend nl to a map

x 3aDxB n-1 + Sn

as follows

f n(t,y,s) if (x,y) e 0 and s e aB nI Sn-

~(t~x~ys) =n n1
Y(x,y) if (x,y) e an and s e B~ 1-

By (4.2)(c) it follows that C is continuous. Since 3( x Bn-1 is

topologically equivalent to Sn the topological degree of C(t,e) is well

defined for every t e i. We shall compute it for t - 0 and t 1. To

this end we extend C(t,o) to a map

x Bn-i+R n+l

since

for every w e int(Bn+1). For t =1we setI O(1,x,y,z) -u(x,Y)
Then by (4.3) it follows that

(4.4) deg(W(,e)) -0

since e(1,x,y,z) is independent of z. For t w e set

-23-
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Fr(OOxys O) = (s0 )(x,y) if r ) X, so e S
n- 2 fixed

(0,x,y,z) = (x-x )e 2 2_ 2
-- ---- z if r < X

X 2+r 2  01 A 2+r2 e2 X2+r 2

122 22

where r = [(x-x 0 )
2 + (yy0 )2 ]1/2 and we shall compute

deg(8(0,*),n X Bn- 1,w) with w = x0eI + y0e2

First notice that 1w, = [Ix 0l
2 + IY0 12]'/2< 1, so the degree is well defined

and it is equal to the algebraic sum of the nondegenerate solutions of the

equation

( - n-I
(4.5) (xyz) e ? x Bn

8(0,x,y,z) - w

Since lwI < I and 18(0,x,y,z)) = I for l(x,y)l ) X the solutions of

(4.5) are the same that the solutions of the following equation

(xy,z) e x B
n 1

I(x,y)l € X,

(4.6)

2X (X-Xo)e + (y-y)e2] + r-- z = w
2 22 0 e 1  02 +r2

By inspection we see that the only solution of (4.6) is x = y = z = 0, and

that it is not degenerate. Therefore dey( (0,*)) = * I and this contradicts

- (4.4). 0

We now set

(4.7) cc, inf sup Ra o O(s)
fe -2a sesn-2

-24-



where E2a is defined by (1.5).

Lenm 4.2. For every a > 1, the caIs defined by (4.7) are critical values

of E . Moreover c + c for a+ 1 and c ) c.
a a a

Proof. It is straightforward to check that Ka  satisfies the assumption (c)

of Palais-Smale on E.0 Then by well known facts about the critical point

theory the c0 os are critical values of Ea.

Now we shall prove the second statement. Since E (u) > E(u) for every

u e Ea , we have that

c a p inf sup oo(s)
aet n-2

2a seS

• inf sup E o U(s) - c (since E2a c E)
ez see n-2

Thus ca • c for every a >1.

Now let us prove that ca 4 c. Choose C > 0. Then there exists p > 2

and a e E such that
p

(4.8) c + £ > sup E(u)

n- 2s

For u e O(Sn-2 c E with a < p/2 we have

da a

In particular, if we fix a0 < p/2 we have that the function

d(s) Ea(a(s)) is bounded by a constant M in 1,a0 ] x Sn-2o Thus,

* - n-2
for u e o(sn 2  we have

d
E (u) d (u) + (4-1)1-a(u) E(u) + (a-I)M .

a da a

We now choose a such that K%(u) 4 E(u) + V u e S ) V a < a. Then by

(4.8), V a < a

-25-
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c + C > sup (E o O(s) - E) = sup Ea o G(s) - E )

,n-2 se n-2sesn '  seSn -

> inf sup Ea oa(s) - e = c - , i.e. c < c + 2e V a < .
oeE,- nU-2a

2 ses
n

Finally we can prove the theorem 1.2.

Proof of theorem 1.2. We consider two cases: c > m and c - m.

I case c > m. For a > 1, let ua be a solution of E(u a ) 
= 0 which

exists by lemma 4.7. Also by lemma 4.2 and 4.1, it follows that

rlin E(u ) = lim c = c < m + 8w

+ 1 a a a+1 a

Q>1 a>1
and since m ( Eu a ) E a(u ) we have that

lir E(u a c < m + 8w
Q 1

Q>1

Then the conclusion follows from theorem 3.1.
o

II case c = m. Choose c > 0, then there exists a e E such that

(4.9) max E o a(s) < m + E

ses
n -2

Let be such that EVu -m in  E o a(s).

seSn
2

We consider a subsequence u (£ + 0) (which for simplicity will be

denoted uk) which converges weakly to some u. Since lim E(3k) - m, and

k +-
since E is weakly lower semicontinuous it follows that

lir a (k) = E(u).
k+ +M

The above equality and the weak convergence imply that uk + u

strongly in H. By Corollary 2.3 we can choose 80 > 0 such that AS0, (u)

is contractible in WI'2a(M;M)-

-26-
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We claim that for every 8 < 80 and ek  small enough there is

k eo (S- 2) such that

(4.10) 1-% - UkeH I

H

In fact, if the above equality does not hold, then

(S ' 2 ) c A8  (u)

and this is absurd since a is an essential map. Therefore, by (4.9) with

C = Ck' we get

lim E(u6 ) M M
k+4f k

and since E is weakly lower semicontinuous we get that

(4.11) lim V E(u )

k,4in k

where u5  is the weak limit of (may be after having taken a

subsequence). By the weak convergence of k and (4.11), it follows that

u + u strongly in H1. So taking the limit in (4.10) we get

Slu - u 81 - 8 .

Thus, for any 6 e [0,60) we get at least one solution u of our problem.

0

I
-27-
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APPENDIX

Let W " (0,+-) x R and u e C ( uS n ) such that

(A.1) Vu e L2(O)

(A.2) -Au - uIVuI 2

(A.3) a P e S n  such that u -P on 3w

then

(A.4) u = P in w

Remarks

1. When w is a bounded contractible open set of 33 (A.4) is also true,

this theorem is due to L. Lemaire [LM] (Theoreme (3.2)). However, we cannot

i obtain (A.4) from the result of L. Lemaire and a conformal change of the

variable. In fact consider a diffeomorphism I between w and n (the open

unit disk of 2) such that (for example)

I(W) - n - ((0,1))

Let

v uI'

Clearly we have:

v e c°(f - {(o,1), sn

2 VvI < 4-

- Av vIVv1
2

v P on 30

But we cannot apply directly the theorem of Lemaire since we do not know if

v e C ( S).

'" -2 8 -
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2. Thanks to a classical theorem (see, for example [HH], [LU2] pp. 485-493)

using (A.1), (A.2), (A.3) and u e C (ZS n ) we know that u is analytic in

3. Our proof of (A.4) is inspired from H. Wente [W1].

Proof of (A.4)

We may assume that P - en+1 , Let w be the following function from

into sn:

if x ) 0 w(x,y) - u(x,y)

if x < 0 wP(x,y) - -uP(-x,y) for 1 4 p 4 n
and

n+I n+I
w (xy) - u (-x,y)

Since luI 2 _ I and u(O,y) P V y e R we have:

wn+1
(A.5) w (O,y) - 0 V y e R

Then, using (A.2), (A.3) and (A.5), it is easy to see that

(A.6) - Aw - w Vw12  (in the distribution sense)

0 2 1 2
moreover w e c I( ) (I ,o(.A. Thus (see C.21, (,i, or [HwD , is

analytic.

Let * e C"(i2,C) be defined by:

SW 2 -2i w w
x y x y

Using (A.6) and lw - 1 it is easy to see that * is holomorphic.

Moreover, by (A.1), we have 4 e L1 ( 2 ) and, therefore 0 - 0. Hence

Vw - 0 on {0} x R

which implies

w- P in R2

-29-
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